

BULK PREPARATION AND TESTING OF CRAIGMONT SAMPLES

NICOLA MINING INC.

KM5954

May 21, 2020

The results contained in this report relate only to the sample(s) submitted for testing. ALS Metallurgy accepts no responsibility for the representativeness of the sample(s) submitted.

TABLE OF CONTENTS

PAGE NO.

1.0	Introduction	1
2.0	Initial Preparation	2
3.0	TOMRA Material Sorting Testing	
3.1	TOMRA Sorting Method Description	
3.2	Sorting Performance – Tower Bulk Sample	5
3.3	Sorting Performance – Portal Bulk Sample	7
4.0	Metallurgical Testing and Performance	9
4.1	Flotation Testing	9
4.2	Magnetic Separation Testing	11
5.0	Conclusions and Recommendations	

FIGURES

1	TOMRA Material Sorting	4
2	Material Sorting Testing Results - Tower Bulk Sample	6
3	Material Sorting Testing Results – Portal Bulk Sample	
4	Flotation Test Data	10
5	Magnetic Test Summary	12

TABLES

1	Weight Distribution of Screened Bulk Samples	2
	Composite Assay Results	

APPENDICES

I SAMPLE ORIGIN	
-----------------	--

- II METALLURGICAL DATA
- III SIZING DATA
- IV SPECIAL DATA

1.0 Introduction

Nicola Mining Inc. is currently undergoing an exploration program on the New Craigmont property located in the interior of British Columbia approximately 13 kilometers from the city of Merritt, British Columbia. In May of 2019, ALS Metallurgy was commissioned by Nicola Mining Inc. to conduct bulk preparation and associated analysis of two bulk rock samples reportedly representative of low grade stockpiles at the New Craigmont Mine. The following outlines the test work that was completed for this program:

- Each bulk sample was prepared by screening and crushing oversize material as required. The two coarsest fractions from each sample were then submitted to an external lab for material sorting testing.
- The sorted product and waste streams were returned to ALS Metallurgy and each stream was prepared and sub-sampled for chemical analyses. A sorting mass balance was prepared for each sample based on the mass distribution and assay results.
- A composite was subsequently constructed from the test products and subjected to preliminary flotation and magnetic separation testing.

Thank you for choosing ALS Metallurgy for your testing requirements. If you have any questions, please do not hesitate to contact us.

Sincerely,

Kendall Culligan, GIT Project Mineralogist

Peter Mehrfert, P.Eng. Operations Manager ALS Metallurgy - Kamloops

R.J. MEHRFERT # 24527 NGINEER 2020 R.J. MEHRFERT R.J. MEHRFERT R.J. MEHRFERT R.J. MEHRFERT R.J. MEHRFERT R.J. MEHRFERT R.J. MEHRFERT

May 21, 2020 KM5954

Electronic Distribution: Jacob Longridge, Nicola Mining Inc. Peter Espig, Nicola Mining Inc.

2.0 Initial Preparation

On May 21, 2019, ALS Metallurgy Kamloops received two bulk rock samples that were reportedly representative of low grade stockpiles at the New Craigmont Mine. The two bulk samples were identified as Tower Bulk Sample and Portal Bulk Sample and weighed about 1.4 tonnes each, detailed information regarding the samples received is located in Appendix I – Sample Origin

Upon receipt, each sample was screened in their entirety using a $\frac{1}{2}$ inch screen. The material that measured coarser than 2 inches was further crushed to minus 2 inches and each bulk sample was then split into three size fractions: <2 >1", $<1 >\frac{1}{2}$ " and minus $\frac{1}{2}$ ". The weight distribution of each of the samples following crushing and sizing are displayed in Table 1.

Sample ID	Weight (kg)	Distribution
Tower Bulk Sample	1369	100
<2" >1"	300	21.9
<1" >0.5"	316	23.0
<0.5"	754	55.1
Portal Bulk Sample	1397	100
<2" >1"	506	36.2
<1" >0.5"	352	25.2
<0.5"	540	38.6

TABLE 1 WEIGHT DISTRIBUTION OF SCREENED BULK SAMPLES

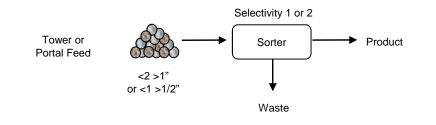
Approximately 45 percent of the overall mass in the Tower Bulk Sample measured coarser than ½ inch. In the Portal Bulk Sample, about 41 percent measured coarser than ½ inch.

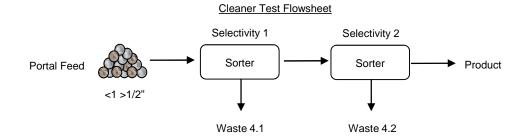
The fractions coarser than ½" from both samples were divided into 2 portions and packaged in steel drums for shipping. The set of 8 drums was shipped to Tomra in Germany for material sorting testing.

3.0 TOMRA Material Sorting Testing

The coarse fractions were tested using a sorting device equipped with X-ray transmission (XRT) sensors. The sensor detects differences in the average atomic density of the rocks and sorts on this basis. Testing was coordinated between the client and TOMRA. A report of material sorting separation details, completed by TOMRA, is located in Appendix IV – Special Data.

3.1 TOMRA Material Sorting Method Description


Each fraction from the Tower and Portal Bulk samples were understood to be separated using two different selectivity parameters. For purposes of this report, the less selective setting is denoted as Selectivity 1 and the more selective setting as Selectivity 2. Each test separated the feed material into two groups; a product (concentrate) stream, which contained the higher atomic density material, and a waste stream, which contained the lower atomic density material. It was anticipated that the higher atomic density material would contain elevated levels of sulphide minerals, and therefore elevated copper levels.


One portion of the <1 >1/2 inch fraction from the Portal Bulk Sample was tested using a two-step sorting protocol. This first run separated the material using Selectivity 1 parameters, and this product stream was further upgraded in an additional sorting run using Selectivity 2 parameters. As a result, two waste streams and one product stream were generated. Figure 1 displays a summary of the material sorting testing.

Upon completion of the sorting testing, the product and waste streams from each fraction were returned to ALS Metallurgy Kamloops for bulk preparation and analysis. The retained minus ½ inch material from each bulk sample was also homogenized and duplicate sub-samples extracted. A head cut from each sample was assayed for copper, iron and sulphur as well as an ICP scan by four acid digestion. The results of the chemical analyses and sorting mass balances can be found in Appendix IV - Special Data.

FIGURE 1 TOMRA MATERIAL SORTING

Standard Test Flowsheet

Summary of Material Sorting Runs

Sample	Size Fraction	kg	Sort Run	Sensitivity	Product Mass %
	<2 >1"	185	T5.1	1	15.5
Tower	<2 >1"	109	T6.1	2	10.2
Tower	<1 >0.5"	126	T1.1	1	20.2
	<1 >0.5"	180	T2.1	2	11.8
	<2 >1"	272	T7.1	1	15.0
	<2 >1"	229	T8.1	2	5.3
Portal	<1 >0.5"	175	T3.1	1	14.6
	<1 >0.5"	159	T4.1	1	13.3
	<1 >0.5"	21*	T4.2	2	39.3

Notes: 1. Test 4.2 feed was the product of Test 4.1.

2. Details of the XRT sensor settings is not known, it is assumed that high and low sensitivities were applied due to differences in mass recovery and product quality.

<u>3.2</u> Sorting Performance – Tower Bulk Sample

The sorting and screening mass balance data for the Tower Bulk Sample is summarized in Figure 2.

The copper and sulphur in the Tower bulk Sample was somewhat evenly distributed across the three feed fractions, although the $<1 >\frac{1}{2}$ inch portions were of slightly lower grade. Feed copper contents ranged from 0.18 to 0.30 percent and measured 0.24 percent overall. Sulphur contents ranged from 0.36 to 0.49 percent and measured 0.41 percent overall.

The sorter was able to reject Tower material with average copper and sulphur grades of 0.07 and 0.27 percent, respectively. At the less selective setting, this resulted in rejecting about 80 to 85 percent of the sorter feed mass, along with 20 to 23 percent of the feed copper. The product stream at this setting had a copper content that was about 4 to 5 times higher than the sorter feed. At the more selective setting, waste mass rejection increased to 89 percent on average, while copper losses increased to about 30 percent on average. The product stream at this more selective setting had a copper content that was about 6 to 7 times higher than the sorter feed.

It should be noted that copper concentration was considerably higher than sulphur concentration across the tests. This suggests that a portion of the sulphur is not associated with higher atomic density sulphide minerals and could be in the form of sulphates. Mineralogical or additional chemical analyses would be required to confirm. It may be of geological interest that the product streams were somewhat elevated in potassium and depleted in sodium, relative to the waste portions.

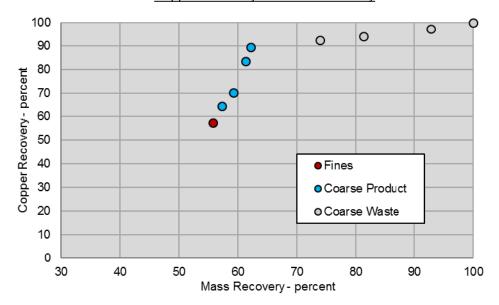

On a total sample basis, approximately 38 percent of the Tower sample feed mass could be rejected to waste by XRT material sorting methods. This is based on crushing to a top size of 2 inches and processing only the <2 >½ inch by sorting. The combined fines and sorted product would result in a potential downstream mill feed grading 0.35 percent copper, a 1.4 times upgrade from the original bulk sample feed. The combined fines plus sorted product feed would contain about 90 and 76 percent of the bulk sample copper and sulphur, respectively.

FIGURE 2 MATERIAL SORTING TESTING RESULTS - TOWER BULK SAMPLE

Size	Sort Run	Stream	ka	maaa 9/	Assay - percent			Distribution - percent		
Fraction	Soft Run	Stream	kg	mass %	Cu	Fe	S	Cu	Fe	S
		Product	29	15.5	1.54	23.3	1.72	80.4	57.1	53.9
<2 >1"	T5.1	Waste	156	84.5	0.069	3.21	0.27	19.6	42.9	46.1
		Feed	185	100	0.30	6.32	0.49	100	100	100
		Product	11	10.2	1.76	33.0	1.88	69.2	54.1	40.3
<2 >1"	T6.1	Waste	98	89.8	0.089	3.19	0.32	30.8	45.9	59.7
		Feed	109	100	0.26	6.24	0.48	100	100	100
		Product	25.5	20.2	0.73	10.6	0.92	76.8	47.4	51.2
<1 >0.5"	T1.1	Waste	100.5	79.8	0.056	2.99	0.22	23.2	52.6	48.8
		Feed	126	100	0.19	4.53	0.36	100	100	100
		Product	21	11.8	1.10	16.2	1.30	71.0	41.9	40.1
<1 >0.5"	T2.1	Waste	159	88.2	0.060	2.99	0.26	29.0	58.1	59.9
		Feed	180	100	0.18	4.54	0.38	100	100	100
<0.5"	-	Fines	754	-	0.25	5.80	0.40	-	-	-
		Product	86.4	6.4	1.22	19.1	1.40	32.1	21.6	21.6
Tot	ol	Fines	754	55.7	0.25	5.80	0.40	57.4	57.5	54.0
100	ai	Waste	513	37.9	0.067	3.09	0.27	10.5	20.9	24.4
		Feed	1353	100	0.24	5.62	0.41	100	100	100
Pote	ential Mill F	eed	840	62.1	0.35	7.16	0.50	89.5	79.1	75.6

Material Sorting Mass Balance

Note: Fines grades are the average of duplicate sub-sample assays.

Copper Recovery Vs. Mass Recovery

3.3 Sorting Performance – Portal Bulk Sample

The sorting and screening mass balance data for the Portal Bulk Sample is summarized in Figure 3.

The copper in the Portal Bulk Sample was elevated in the fines fraction, measuring about 0.21 percent copper, compared to an average of 0.13 percent copper in the coarse fractions. The overall copper content of the bulk sample was 0.16 percent. Sulphur contents were more similar between the coarse fractions and the fines, ranging from 0.22 to 0.32 percent and measured 0.28 percent overall.

The sorter was able to reject Portal material with average copper and sulphur grades of 0.07 and 0.15 percent, respectively. At the less selective setting, about 86 percent of the sorter feed mass was rejected to waste, along with 43 to 52 percent of the feed copper. The product stream at this setting had a copper content that was about 3 to 4 times higher than the sorter feed. At the more selective setting in test 8.1, waste mass rejection increased to about 95 percent, while copper losses were similar to the less selective setting at about 46 percent. The product stream at this more selective setting had a copper content that was about 10 times higher than the sorter feed. The two stage separation produced a combined result that had a similar mass rejection to the more selective sorting conducted in test 8.1, however copper losses to the combined waste streams increased to about 59 percent.

The Portal sample sulphur concentration was similar to copper concentration, suggesting that most of the sulphur is associated with sulphide minerals. The lower copper recovery following sorting for Portal compared to Tower samples may simply be a result of the lower feed grade. Of geological note, the Portal product streams were somewhat elevated in calcium and depleted in sodium, relative to the waste portions.

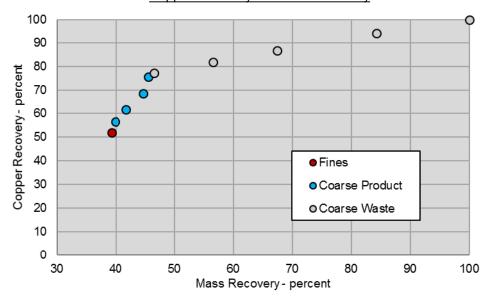

On a total sample basis, approximately 54 percent of the Portal sample feed mass could be rejected to waste by XRT material sorting methods. This is based on crushing to a top size of 2 inches and processing only the <2 >½ inch by sorting. The combined fines and sorted product would result in a potential downstream mill feed grading 0.27 percent copper, a 1.7 times upgrade from the original bulk sample feed. The combined fines plus sorted product feed would contain about 76 and 70 percent of the bulk sample copper and sulphur, respectively.

FIGURE 3 MATERIAL SORTING TESTING RESULTS - PORTAL BULK SAMPLE

Size	Sort Run	Straam	ka	maga 9/	As	say - perce	ent	Distri	bution - pe	ercent
Fraction	Son Run	Stream	kg	mass %	Cu	Fe	S	Cu	Fe	S
		Product	41	15.0	0.37	10.8	0.69	48.2	34.5	46.3
<2 >1"	T7.1	Waste	232	85.0	0.070	3.61	0.14	51.8	65.5	53.7
		Feed	272	100	0.11	4.69	0.22	100	100	100
		Product	12	5.3	1.30	16.5	3.09	53.6	18.9	53.9
<2 >1"	T8.1	Waste	217	94.7	0.063	3.95	0.15	46.4	81.1	46.1
		Feed	229	100	0.13	4.61	0.30	100	100	100
		Product	25.5	14.6	0.44	9.90	0.66	51.7	31.7	44.0
<1 >0.5"	T3.1	Waste	149.5	85.4	0.070	3.64	0.14	48.3	68.3	56.0
		Feed	175	100	0.12	4.55	0.22	100	100	100
	T4.1	Product	8.3	5.2	1.21	21.7	2.82	41.2	23.3	45.5
<1 >0.5"		Waste 2	12.8	8.0	0.31	7.80	0.40	16.3	12.9	10.0
<1 20.5		Waste 1	138	86.7	0.075	3.57	0.17	42.5	63.8	44.5
		Feed	159	100	0.15	4.86	0.32	100	100	100
<0.5"	-	Fines	540	-	0.22	6.05	0.30	-	-	-
		Product	87	6.3	0.60	12.4	1.22	23.4	15.0	27.6
Tot	al	Fines	540	39.3	0.22	6.05	0.30	52.1	45.6	42.6
100	ai	Waste	748	54.4	0.073	3.78	0.15	24.5	39.5	29.8
		Feed	1375	100	0.16	5.21	0.28	100	100	100
Pote	ential Mill F	eed	627	45.6	0.27	6.92	0.43	75.5	60.5	70.2

Material Sorting Mass Balance

Note: Fines grades are the average of duplicate sub-sample assays.

Copper Recovery Vs. Mass Recovery

4.0 Metallurgical Testing and Performance

Upon completion of the material sorting testing, a Sorted Mill Feed Composite was constructed from weighted portions of both bulk sample products. This composite was used for a preliminary metallurgical test program which included flotation and magnetic separation testing. Detailed information regarding the construction of the composite is outlined in Appendix I – Sample Origin.

A representative cut from the composite was removed and assayed for copper, iron, and sulphur content. The composite measured approximately 0.3 percent copper, 6.4 percent iron, and 0.5 percent sulphur; Table 2 displays the head assay results for the composite.

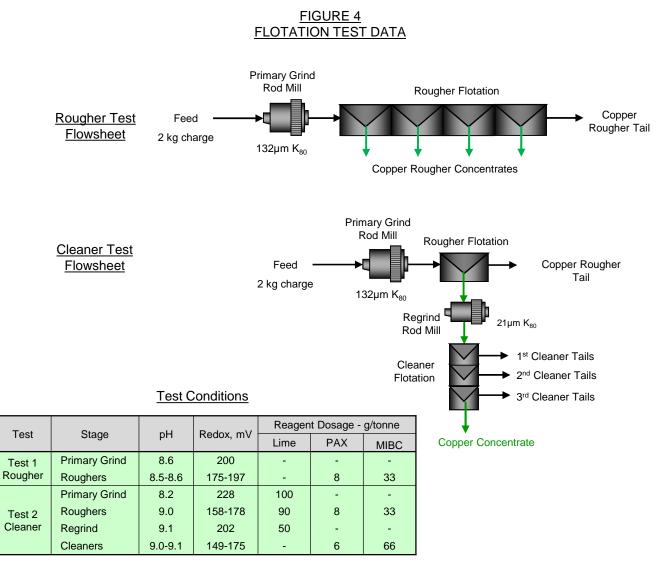
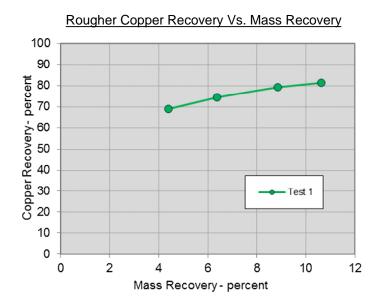
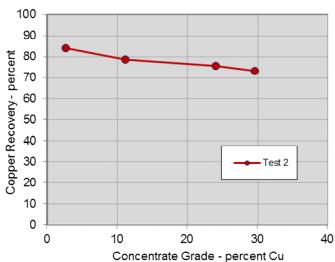

Composite	Assay - percent			
Composite	Cu	Fe	S	
Sorted Mill Feed Composite Head	0.32	6.4	0.45	

TABLE 2 COMPOSITE ASSAY RESULTS


4.1 Flotation Testing

Two preliminary flotation tests were conducted on the composite, a kinetic rougher and an open circuit cleaner test. The testing was completed at a nominal primary grind sizing of 132μ m K₈₀ using the reagents potassium amyl xanthate (PAX) and methyl isobutyl carbonyl (MIBC) as a sulphide mineral collector and frother, respectively. Rougher flotation was completed at a natural pH that ranged from 8.5 to 8.6 while an elevated pH of 9.0 to 9.1 using lime was used in the cleaner test. Flotation data is summarized in Figure 4, detailed data can be found in Appendix II – Metallurgical Data.


In the rougher test, about 81 percent of the copper and about 11 percent of the mass was recovered to the rougher concentrate. Rougher performance improved in the cleaner test with some lime addition. A moderate level of regrinding was applied to the rougher concentrate, resulting in a cleaner feed sizing that measured $21\mu m K_{80}$. A copper concentrate grading 30 percent copper was produced, which contained 73 percent of the feed copper following 3 stages of dilution cleaning.

Note: Redox was measured using a Pt tip electrode in a standard AgCl solution.

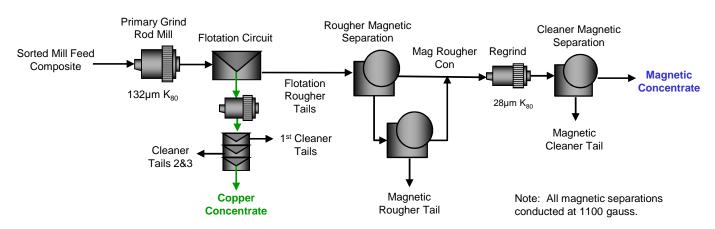
Cleaner Copper Recovery Vs. Concentrate Grade

10

4.2 Magnetic Separation Testing

The combined sample of rougher tailings from the two flotation tests was used to evaluate the potential to produce a magnetite concentrate by magnetic separation. A summary of the test flowsheet and results is presented in Figure 5, detailed data can be found in Appendix II – Metallurgical Data.

A 3 kilogram sample of combined rougher tailings was processed through a magnetic drum separator to recover a rougher magnetic concentrate. Two stages of rougher magnetic separation were applied, which recovered approximately 32 percent of the iron remaining in the rougher tails, along with about 4.8 percent of the rougher tail mass.


A 100 gram sub-sample of the rougher magnetic concentrate was reground to approximately 28μ m K₈₀, and further upgraded in a Davis Tube magnetic separator to represent cleaner magnetic upgrading. Approximately 94 percent of the iron in the magnetic rougher concentrate was recovered to the cleaner magnetic concentrate, which graded about 65 percent iron. It is possible that testing with a larger sample and including elutriation in the final cleaner flowsheet could improve the iron grade of the magnetite concentrate, however additional regrinding could be required to produce a concentrate grading over 67 percent iron.

On a combined basis, approximately 3.3 percent of the rougher tail mass was recovered to the cleaner magnetic concentrate.

Relative to the flotation feed, approximately 28 percent of the iron in the Sorted Mill Feed Composite was recovered to the cleaner magnetic concentrate, along with approximately 3 percent of the composite mass.

FIGURE 5 MAGNETIC TEST SUMMARY

Overall Test Flowsheet

Metallurgical Balance - Rougher Magnetic Separation

Product	Mass	Assays - percent	Distribution - percent
FIODUCI	Percent	Fe	Fe
Magnetic Rougher Feed (calc.)	100	6.9	100
Magnetic Rougher Concentrate	4.8	45.9	32.3
Magnetic Rougher Tail	95.2	4.9	67.7

Metallurgical Balance - Cleaner Magnetic Separation

Product	Mass	Assays - percent	Distribution - percent
Floduct	Percent	Fe	Fe
Magnetic Cleaner Feed (calc.)	100	46.8	100
Magnetic Concentrate	67.8	64.8	93.9
Magnetic Cleaner Tailing	32.2	8.8	6.1

Product	Mass	Ass	say - perc	ent	Distribution - percent		
FIOUUCI	percent	Cu	Fe	S	Cu	Fe	S
Sorted Mill Feed	100.0	0.34	6.87	0.47	100	100	100
Copper Concentrate	0.9	29.6	29.4	33.1	73.1	3.6	60.1
Copper Cleaner Tails 2&3	1.6	1.2	8.8	2.0	5.4	2.0	6.8
Copper 1st Clnr Tail	8.5	0.23	7.70	0.38	5.6	9.5	6.9
Copper Rougher Tails	89.1	0.06	6.54	0.14	15.8	84.9	26.2
Magnetic Concentrate	2.9	0.0	64.8	0.0	0.0	27.6	0.0
Mag Cleaner Tails	4.3	0.0	8.8	0.0	0.0	5.5	0.0
Magnetic Ro Tail	81.9	0.07	4.34	0.15	15.8	51.7	26.2

Metallurgical Balance – Overall Concentrator Process

Notes: a) Mag Ro Tail assay values estimated to match feed grade and rougher tails distribution. b) Cu and S values for Mag Concentrate and Mag Cleaner Tails were assumed as zero.

5.0 Conclusions and Recommendations

A preliminary metallurgical test program was conducted on two bulk samples of low grade stockpile material from the New Craigmont project site. The two bulk samples had a combined mass of approximately 3 tonnes and were reported to be representative of the Tower and Portal stockpiles. Summation of the test product masses and assay data indicated that the Tower and Portal samples contained 0.24 and 0.16 percent copper, respectively.

The bulk samples were screened to remove material that was finer than ½ inch, and any oversize material was further crushed to minus 2 inches. The material coarser than ½ inch was separated into two size fractions and shipped to TOMRA's test facility in Germany for material sorting testing. A series of sorting tests using XRT sensors were conducted and the products were returned to ALS Metallurgy for preparation and analysis.

The results indicate that the XRT sorter was successful in rejecting material that had average copper contents of 0.07 percent. Since the coarse fractions of the two bulk samples had different feed grades, rejecting material at this low average copper grade resulted in different copper and mass recoveries. For the coarse fraction of the Tower sample, which graded 0.23 percent copper, overall copper recovery to the material sorter product was about 75 percent, along with about 14 percent of the sorter feed mass. The coarse fraction of the Portal sample graded 0.13 percent copper and overall about 49 percent of the sorter feed copper was recovered to the product stream along with about 10 percent of the feed mass. These separations resulted in a copper grade upgrading factor of about 5 times on average for the coarse fractions of both samples.

High and low selectivity settings on the XRT sensor were tested. The less selective setting resulted in about a 9 percent increase in copper recovery for the Tower sample over the more selective setting, however it was accompanied by a 7 percent increase in mass recovery. The difference in copper recovery was not as clear for the Portal sample, however the mass recovery was consistently about 10 percent higher at the less selective setting.

In our experience, the results suggest that the coarse material in both samples is amenable to material sorting using XRT sensors. While the copper recovery following sorting for the Portal sample coarse fraction was somewhat low, the feed grade was also quite low. The sorter was able to contribute significant value by rejecting a high portion of low grade material and generating an upgraded product. The consistent low copper contents of the waste streams from both bulk samples is encouraging and suggests that XRT sorting can successfully remove low grade dilution from these feed streams.

The overall reduction in feed mass to a downstream milling process was dependent on the fines content of the samples, since material finer than ½ inch could not be efficiently separated by particle sorting methods. The Tower sample contained about 56 percent fines, so the overall reduction in bulk sample mass by XRT material sorting was about 38 percent. The Tower bulk sample copper grade was upgraded from 0.24 percent to 0.35 percent with this low grade mass rejection. The Portal sample contained about 39 percent fines and the overall reduction in bulk sample mass by XRT sorting was about 54 percent. The Portal bulk sample copper grade was upgraded from 0.16 percent to 0.27 percent with this low grade mass rejection.

It is recommended to continue evaluating other mineralized sources across the reserves of the project to confirm the material sorting amenability and effect on downstream mill feed grade and mass reduction. It is recommended to consider collecting additional bulk samples from the low grade stockpiles to confirm the fines contents. The cost of evaluating material sorting performance on the coarse portions of additional bulk samples could likely be reduced by extracting smaller sub-samples for testing. The potential to apply material sorting to in-situ reserves could be evaluated using half drill core samples.

A composite representing a potential mill feed was assembled from weighted portions of the fines and coarse product from both bulk samples. The head grade of the mill feed composite measured 0.32 percent copper and 0.45 percent sulphur.

A series of preliminary metallurgical tests were conducted on the mill feed composite to evaluate response to froth flotation and magnetic separation.

Two flotation tests were conducted, the first as a kinetic rougher and the second as an open circuit cleaner test. A primary grind sizing of 132μ m K₈₀ was applied for both tests. In the cleaner test, which included regrinding and 3 stages of dilution cleaning, a final copper concentrate grading about 30 percent copper was produced which contained 73 percent of the feed copper. This test was very preliminary, but suggests that the material responds well to concentration by froth flotation. Additional testing should be conducted to assess rougher circuit recovery as a function of primary grind size and the potential to increase recovery with adjustments to pulp chemistry. Finally, a locked cycle test is recommended to confirm metallurgical performance in a closed circuit arrangement.

Magnetic separation was evaluated on the flotation rougher tails stream. The combined results of a magnetic rougher test and a simple cleaner upgrading test indicated that a magnetite concentrate grading about 65 percent iron could be produced. This concentrate contained about 28 percent of the iron in the mill feed composite, along with about 3 percent of the feed mass. Further testing is recommended to confirm the potential to produce a higher grade magnetite concentrate. It may be of value to produce a larger mass of concentrate for marketing purposes, and confirm the levels of potential penalty elements in the concentrate.

APPENDIX I - KM5954

SAMPLE ORIGIN

1.0 Sample Origin

Two bulk rock samples, identified as Tower Bulk Sample and Portal Bulk Sample, were received at ALS Metallurgy Kamloops on May 21, 2019, and weighed approximately 1.4 and 1.5 kilograms, respectively. Table I-1 displays the sample receiving information for this program. A sample location map provided by Nicola Mining is appended.

Upon arrival, the samples were screened at $\frac{1}{2}$ inch. A small amount of material was coarser than 2 inches and was crushed to minus 2 inches. The $<2 > \frac{1}{2}$ inch material split into two size fractions, <2 > 1 and $<1 > \frac{1}{2}$ inch, and packaged in 8 plastic drums. These coarse fractions were then sent to TOMRA in Germany for material sorting testing. Arrangements for the sorting tests were coordinated by Nicola Mining personnel.

Upon completion of the material sorting testing, the product and waste streams from each fraction were returned to ALS Metallurgy Kamloops for bulk preparation and analysis. A listing of the samples received on October 7, 2019 is shown in Table I-2. Prior to preparation, personnel from Nicola Mining visited ALS Metallurgy to review the samples, take pictures, and determine a suitable preparation approach.

Once received, the larger mass waste products were crushed to minus ³/₄ inch, homogenized, and a 24 kilogram sub-sample was extracted from each by cone and quartering methods. Similarly, the minus ¹/₂ inch material from each bulk sample was homogenized and a 24 kilogram sub-sample extracted. All products and sub-samples were then crushed to 100 percent passing a 6 mesh screen and rotary split to extract representative sub-samples. A head cut from each sample was assayed for copper, iron and sulphur as well as an ICP scan by four acid digestion. The fines portions were sub-sampled and assayed in duplicate. Results of the chemical assays and sorting mass balances are located in Appendix IV – Special Data.

A composite, Sorted Mill Feed Composite, was then constructed for metallurgical testing using the products and fines of each stream. Table I-3 displays the details of the construction of the composite.

All samples from the project are currently in storage and will be disposed after June 30, 2020 unless other arrangements are made.

SAMPLES RECEIVED MAY 2	<u>1, 2019</u>
Sample ID	kg
Tower Bulk Sample - Bag 1	857
Tower Bulk Sample - Bag 2	581
Tower Bulk Sample Total	1438

684

785

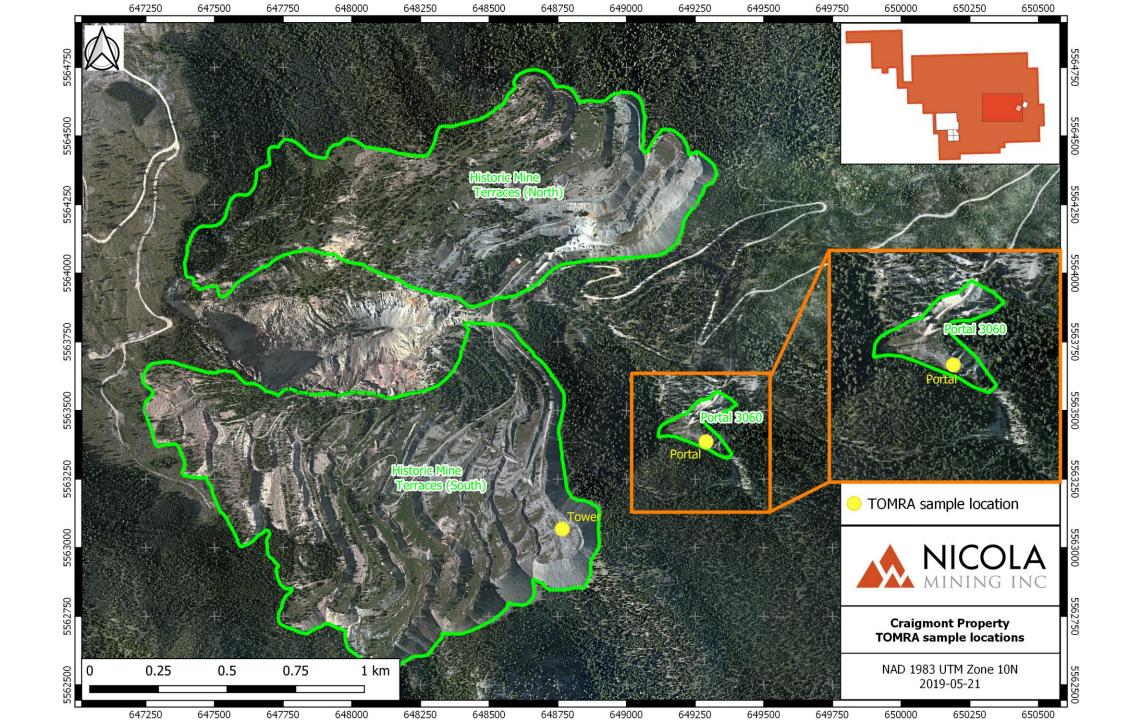
1469

TABLE I-1 SAMPLES RECEIVED MAY 21, 2019

Note: Gross shipment weights, includes pallets and super sacks, estimated at 70 kg per sample.

Portal Bulk Sample - Bag 1

Portal Bulk Sample - Bag 2


Portal Bulk Sample Total

Sample ID	Particle Size (inches)	Product kg	Waste kg
Test 1.1 Tower	<1 >0.5	25.5	100.5
Test 2.1 Tower	<1 >0.5	21.2	159
Test 3.1 Portal	<1 >0.5	25.5	149.5
Test 4.1 Portal	<1 >0.5	0.0	138
Test 4.2 Portal	<1 >0.5	8.3	12.8
Test 5.1 Tower	<2 >1	28.6	156
Test 6.1 Tower	<2 >1	11.1	97.5
Test 7.1 Portal	<2 >1	40.8	231.5
Test 8.1 Portal	<2 >1	12.1	216.5

TABLE I-2 SAMPLES RECEIVED OCTOBER 7, 2019

Product	Size Fraction	kg
Tower T5.1	<2 >1"	0.41
Tower T6.1	<2 >1"	0.16
Tower T1.1	<1 >0.5"	0.36
Tower T2.1	<1 >0.5"	0.30
Tower Fines	<0.5"	10.77
Portal T7.1	<2 >1"	0.78
Portal T8.1	<2 >1"	0.23
Portal T3.1	<1 >0.5"	0.49
Portal T4.2	<1 >0.5"	0.16
Portal Fines	<0.5"	10.34
Total		24.0

TABLE I-3 COMPOSITE CONSTRUCTION

APPENDIX II - KM5954

METALLURGICAL TEST DATA

<u>INDEX</u>

<u>TEST</u>	PAGE
1	Rougher Test – Sorted Mill Feed Composite1
2	Cleaner Test - Sorted Mill Feed Composite
3	Magnetic Separation Test - Rougher Tails Composite
4	Magnetic Separation Test - Magnetic Rougher Concentrate
5	Cleaner / Magnetic Separation Test - Sorted Mill Feed Composite9

DATE:	November 8, 2019
PROJECT NO:	KM5954-01
PURPOSE:	Preliminary Rougher Test.

PROCEDURE: Perform a one product rougher test.

FEED: 2 kg of Sorted Mill Feed Composite ore ground to a nominal $132 \mu m K_{80}$.

Stage	Reager	nts Added	g/tonne	Т	ime (minute	s)	pН	Redox
Oldge	PAX		MIBC	Grind	Cond.	Float	P''	Redux
Primary Grind				23			8.6	200
COPPER CIRCUIT:								
Rougher 1	3		22		1	2	8.6	197
Rougher 2	2		-		1	2	8.6	175
Rougher 3	2		11		1	2	8.5	176
Rougher 4	1		-		1	2	8.5	175

Flotation Data	Rougher		
Flotation Machine	Denver		
Cell Size in liters	4.4		
Aspiration	Air		
Water Type	Fresh		
Impeller Speed in rpm	1100		

Grinding Data	Primary Grind
Mill:	M2-Mild
Charge/Material:	20kg-Mild
Water:	1000ml

KM5954-01 Sorted Mill Feed Composite Overall Metallurgical Balance

Product	Weight		As	say - perc	ent	Distribution - percent		
FIOUUCI	%	grams	Cu	Fe	S	Cu	Fe	S
Copper Ro Con 1	4.4	87.1	4.86	11.2	5.74	68.9	7.2	56.7
Copper Ro Con 2	2.0	39.3	0.87	7.70	0.76	5.6	2.2	3.4
Copper Ro Con 3	2.5	48.7	0.60	7.50	1.01	4.8	2.7	5.6
Copper Ro Con 4	1.8	35.2	0.36	7.70	0.55	2.1	2.0	2.2
Copper Ro Tail	89.4	1767.7	0.07	6.60	0.16	18.7	85.9	32.1
Feed	100.0	1978.0	0.31	6.87	0.45	100	100	100

KM5954-01 Sorted Mill Feed Composite Cumulative Metallurgical Balance

Cumulative	Cum. Weight		Assay - percent			Distribution - percent		
Product	%	grams	Cu	Fe	S	Cu	Fe	S
Product 1	4.4	87.1	4.86	11.2	5.74	68.9	7.2	56.7
Product 1 to 2	6.4	126.4	3.62	10.1	4.19	74.5	9.4	60.1
Product 1 to 3	8.9	175.1	2.78	9.4	3.31	79.2	12.1	65.7
Product 1 to 4	10.6	210.3	2.37	9.10	2.85	81.3	14.1	67.9
Product 5	89.4	1767.7	0.07	6.60	0.16	18.7	85.9	32.1
Feed	100.0	1978.0	0.31	6.87	0.45	100	100	100

DATE:	November 19, 2019
PROJECT NO:	KM5954-02
PURPOSE:	Preliminary Cleaner Test.
PROCEDURE:	Perform a standard one product cleaner test.

 FEED:
 2 kg of Sorted Mill Feed Composite ore ground to a nominal 132µm K₈₀.

 Copper Regrind Discharge - 21µm K₈₀.

Stage	Reager	nts Added	g/tonne	Ti	ime (minute	s)	pН	Redox
Glage	Lime	PAX	MIBC	Grind	Cond.	Float	рп	Redux
Primary Grind	100			23			8.2	228
COPPER CIRCUIT:								
Rougher 1	90	3	22		1	2	9.0	158
Rougher 2	\checkmark	2	11		1	2	9.0	166
Rougher 3	\checkmark	2	-		1	2	9.0	174
Rougher 4	\checkmark	1	-		1	2	9.0	178
Regrind	50			10			9.1	202
Cleaner 1	-	3	22		1	5	9.1	175
Cleaner 2	\checkmark	2	22		1	4	9.0	149
Cleaner 3	\checkmark	1	22		1	3	9.0	165

Flotation Data	Rougher	Cleaner	Grinding Data	Primary Grind	Copper Regrind
Flotation Machine	Denver	Denver	Mill:	M2-Mild	RM3-Mild
Cell Size in liters	4.4	2.2	Charge/Material:	20kg-Mild	6kg-Stainless Steel
Aspiration	Air		Water:	1000ml	estimated
Water Type	Fresh				
Impeller Speed in rpm	900	1200			

KM5954-02 Sorted Mill Feed Composite Overall Metallurgical Balance

Product	Weight		Assay - percent			Distribution - percent		
Floduct	%	grams	Cu	Fe	S	Cu	Fe	S
Copper Con	0.9	17.0	29.6	29.4	33.1	73.1	3.7	60.1
Copper 3rd Clnr Tail	0.2	4.7	3.70	11.9	6.23	2.5	0.4	3.1
Copper 2nd Clnr Tail	1.4	26.8	0.75	8.20	1.29	2.9	1.6	3.7
Copper 1st Clnr Tail	8.6	168.9	0.23	7.70	0.38	5.6	9.7	6.9
Copper Ro Tail	88.9	1749.4	0.06	6.50	0.14	15.8	84.6	26.2
Feed	100.0	1966.8	0.35	6.84	0.48	100	100	100

KM5954-02 Sorted Mill Feed Composite Cumulative Metallurgical Balance

Cumulative	Cum. Weight		As	say - perc	ent	Distribution - percent		
Product	%	grams	Cu	Fe	S	Cu	Fe	S
Product 1	0.9	17.0	29.6	29.4	33.1	73.1	3.7	60.1
Product 1 to 2	1.1	21.7	24.0	25.6	27.3	75.7	4.1	63.3
Product 1 to 3	2.5	48.5	11.1	16.0	12.9	78.6	5.8	67.0
Product 1 to 4	11.1	217.4	2.67	9.55	3.18	84.2	15.4	73.8
Product 5	88.9	1749.4	0.06	6.50	0.14	15.8	84.6	26.2
Feed	100.0	1966.8	0.35	6.84	0.48	100	100	100

DATE:	November 25, 2019					
PROJECT NO:	KM5954-03					
PURPOSE:	Preliminary Magnetic Separation					
PROCEDURE:	Perform magnetic separation on Copper Rougher Tails					
FEED:	3 kg of Rougher Tails Composite					
Magnetic Separation Conditions LIMS	Rougher 1	Rougher 2				
Mass (kg)	3	-				
Density	40 25					
Gauss Surface	1100	1100				
Flow Rate (L/min)	2.0	2.0				

3.0

1.1

Solids SG (estimate) Flow Rate (kg/min)

3.0

0.6

KM5954-03 Rougher Tails Composite Overall Metallurgical Balance

Product	We	ight	Assay - Percent	Distribution - Percent	
FIOUUCI	%	g	Fe	Fe	
Magnetic Ro Con 1	4.54	135	47.6	31.4	
Magnetic Ro Con 2	0.31	9	21.1	0.9	
Magnetic Rougher Tail	95.2	2834	4.9	67.7	
Feed	100.0	2979	6.9	100	

KM5954-03 Rougher Tails Composite Cumulative Metallurgical Balance

Cumulative	Cum. Weigl		Assay - Percent	Distribution - Percent
Product	%	g	Fe	Fe
Product 1	4.54	135	47.6	31.4
Product 1 to 2	4.84	144	45.9	32.3
Product 3	95.2	2834	4.9	67.7
Feed	100.0	2979	6.9	100

DATE:	November 28, 2019
PROJECT NO:	KM5954-04
PURPOSE:	To Determine the Amount of Magnetic Material in the Sample.
PROCEDURE:	Standard Davis Tube Magnetic Separation.
FEED:	Magnetic Rougher Concentrate ground to a nominal 28 μ m K $_{80}$.

Conditions	Cycle I	Cycle II	Cycle III
Mass (g)	33	33	33
DCV	21	21	21
DCA	0.3	0.3	0.3
Gauss	1100	1100	1100
Flow Rate (1 min)	0.4	0.4	0.4
Agitation Speed (rpm)	82	82	82
Time (min)	4.5	4.5	4.5
Comments:			

Note: Ground total feed for 3 minutes in a stirred mill, processed in Davis Tube in 3 portions.

KM5954-04 Mag Rougher Concentrate	
Overall Metallurgical Balance	

Product	We	eight	Assay - Percent	Distribution - Percent
FIDduci	%	g	Fe	Fe
Magnetic Concentrate	67.8	67	64.8	93.9
Magnetic Tail	32.2	32	8.8	6.1
Feed	100.0	98	46.8	100

DATE:	November 29, 2019
PROJECT NO:	KM5954 Tests 2 - 4 Compilation
PURPOSE:	Preliminary Cleaner plus Magnetic Separation Test.
PROCEDURE:	One product cleaner test followed by magnetic separation on Rougher tails
FEED:	2.0 kg of Sorted Mill Feed Composite ore ground to a nominal 132μm K ₈₀ . Copper Regrind Discharge - 21μm K ₈₀ . Magnetic Cleaner Regrind Discharge - 28μm K ₈₀ .

Stage	Reage	nts Added	g/tonne	Ti	ime (minute	s)	pН	Redox
Stage	Lime	PAX	MIBC	Grind	Cond.	Float	рп	Redux
Primary Grind	100			23			8.2	228
COPPER CIRCUIT:								
Rougher 1	90	3	22		1	2	9.0	158
Rougher 2	\checkmark	2	11		1	2	9.0	166
Rougher 3	\checkmark	2	-		1	2	9.0	174
Rougher 4	\checkmark	1	-		1	2	9.0	178
Regrind	50			10			9.1	202
Cleaner 1	-	3	22		1	5	9.1	175
Cleaner 2	\checkmark	2	22		1	4	9.0	149
Cleaner 3	\checkmark	1	22		1	3	9.0	165
LIMS Mag Separation Davis Tube Separation		Rougher Cleaner		3				

Flotation Data	Rougher	Cleaner	Grinding Data	Primary Grind	Copper Regrind	
Flotation Machine	Denver	Denver Denver Mill:		M2-Mild	RM3-Mild	
Cell Size in liters	4.4	2.2	Charge/Material:	20kg-Mild	6kg-Stainless Steel	
Aspiration	Air		Water:	1000ml	estimated	
Water Type	Fresh					
Impeller Speed in rpm	900	1200				

Product	Weight		Assay - percent			Distribution - percent		
	%	grams	Cu	Fe	S	Cu	Fe	S
Copper Con	0.9	17.0	29.6	29.4	33.1	73.1	3.6	60.1
Copper 3rd Clnr Tail	0.2	4.7	3.70	11.9	6.23	2.5	0.4	3.1
Copper 2nd Clnr Tail	1.3	26.8	0.75	8.20	1.29	2.9	1.6	3.7
Copper 1st Clnr Tail	8.5	168.9	0.23	7.70	0.38	5.6	9.5	6.9
Mag Cleaner Con	2.9	58.4	0.0	64.8	0.0	0.0	27.6	0.0
Mag Cleaner Tails	4.3	86.2	0.0	8.8	0.0	0.0	5.5	0.0
Mag Ro Tail	81.9	1635.4	0.07	4.34	0.15	15.8	51.7	26.2
Feed	100.0	1997.4	0.34	6.87	0.47	100	100	100

<u>KM5954 Sorted Mill Feed Composite</u> <u>Overall Metallurgical Balance - Copper Flotation Plus Magnetite Circuit</u>

Notes: a) Mag Ro Tail assay values estimated to match feed grade and rougher tails distribution.

b) Cu and S values for Mag Cleaner Con and Mag Cleaner Tails were assumed as zero.

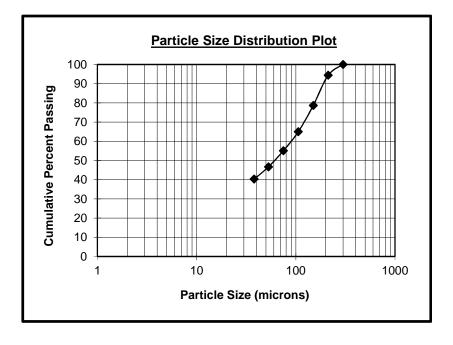
KM5954 Sorted Mill Feed Composite Cumulative Metallurgical Balance

Cumulative	Cum. Weight		Assay - percent			Distribution - percent		
Product	%	grams	Cu	Fe	S	Cu	Fe	S
Product 1	0.9	17.0	29.6	29.4	33.1	73.1	3.6	60.1
Product 1 to 2	1.1	21.7	24.0	25.6	27.3	75.7	4.1	63.2
Product 1 to 3	2.4	48.5	11.1	16.0	12.9	78.6	5.7	66.9
Product 1 to 4	10.9	217.4	2.67	9.55	3.18	84.2	15.1	73.8
Product 5	2.9	58.4	-	64.80	-	0.0	27.6	0.0
Product 5 to 6	7.2	144.6	-	31.42	-	0.0	33.1	0.0
Product 7	81.9	1635.4	0.07	4.34	0.15	15.8	51.7	26.2
Feed	100.0	1997.4	0.34	6.87	0.47	100	100	100

APPENDIX III - KM5954

PARTICLE SIZING DATA

<u>INDEX</u>

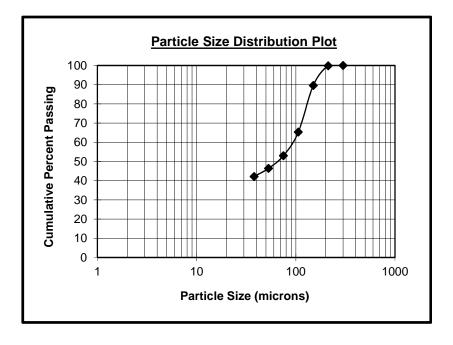

TABLE		<u>µт К₈₀</u>	<u>PAGE</u>
III-1	KM5954 Sorted Mill Feed Composite - 19 Minute Grind	155	1
III-2	KM5954 Sorted Mill Feed Composite - 23 Minute Grind	132	2
III-3	KM5954-02 Copper Regrind Discharge	21	3
III-4	KM5954-04 Mag Feed	28	4

Product	Particle Size	Weight	Cumulative
	µm	% Retained	% Passing
48 Mesh	300	0.00	100.0
65 Mesh	212	5.60	94.4
100 Mesh	150	15.70	78.7
150 Mesh	106	13.70	65.0
200 Mesh	75	9.90	55.1
270 Mesh	53	8.40	46.7
400 Mesh	38	6.40	40.3
TOTAL		100.00	**

TABLE III-1 SCREEN ANALYSIS KM5954 Sorted Mill Feed Composite 19 Minute Grind Calibration

K80= 155µm

Note: 19 min. grind calibration using 2 kg. Ore, 1000 ml water and 20 kg. of Mild Steel rods in Mill: M2



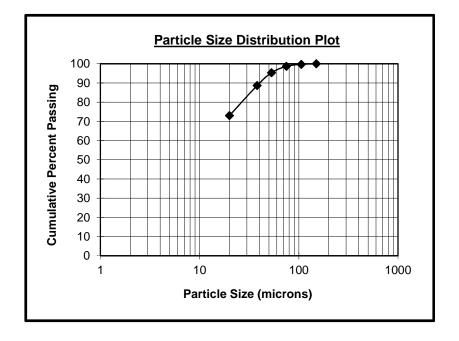
Product	Particle Size	Weight	Cumulative
	µm	% Retained	% Passing
48 Mesh	300	0.00	100.0
65 Mesh	212	0.20	99.8
100 Mesh	150	10.20	89.6
150 Mesh	106	24.30	65.3
200 Mesh	75	12.30	53.0
270 Mesh	53	6.60	46.4
400 Mesh	38	4.20	42.2
TOTAL		100.00	**

TABLE III-2 SCREEN ANALYSIS KM5954 Sorted Mill Feed Composite 23 Minute Grind Calibration

K80= 132µm

Note: 23 min. grind calibration using 2 kg. Ore, 1000 ml water and 20 kg. of Mild Steel rods in Mill: M2

Result Analysis Report


Project and Test number: <m5954-02< th=""><th>Measured Kent</th><th>by:</th><th></th><th>sured: sday, November 19</th><th>, 2019 9:45:0</th><th>05 AM</th></m5954-02<>	Measured Kent	by:		sured: sday, November 19	, 2019 9:45:0	05 AM				
Sample Name:	Edited by:		Ana	lysed:						
Copper Regrind Discharge - Aver	-			Tuesday, November 19, 2019 9:45:07 AM						
Particle Name: Silica 0.1 Particle RI: 1.544 Dispersant Name: Water	Accessor Hydro 200 Absorptio 0.1 Dispersan 1.330	0MU (A) on:	Gen Size 0.10	ghted Residual:	000 um	Sensitivity: Normal Obscuration: 18.89 % Result Emulation: Off				
Concentration: 0.0109 %Vol	Span : 3.676		Uni 1 1.17	formity:		Result units: Volume				
Specific Surface Area: 1.67 m²/g	Surface W 3.585	Veighted Mean D[3,2] um	: Vol. 13.2	Weighted Mean E 22 um	D[4,3] :					
d(0.1): 1.276 um	d(0.5): 8.265 um	d(0.8): 21.296	um d(0.9): 31.655 um	d(0.98):	57.04 um				
5.5		Particle Size	Distribution			110				
5						100				
4.5						- 90				
						- 80				
8 3.5						- 70				
(%) 3.5 au 3 DI 2.5 2						- 60				
<u>5</u> 2.5						- 50				
> 2						- 40				
1.5						- 30				
1				\mathbf{X}		- 20				
0.5						- 10				
0										
0.1	1	1		100		1000				
		Particle S								
Size (µm) Volume In %	Size (µm) Volume In % 0.479	Size (µm) Volume In %	Size (µm) Volume 10.965	52.481	/olume In %	Size (µm) Volume In % 251.189				
0.100 0.00 0.00 0.00	0.525 0.61	2.512 1.68 2.512 1.79	12.023	2.99 3.01 57.544	0.72 0.57	275.423 0.00				
0.120 0.00	0.575 0.77	2.754 1.90	13.183 14.454	3.01 63.096	0.43	301.995 331.131 0.00				
0.145 0.00	0.692 0.89	3.311 2.01	15.849	2.99 75.858	0.32 0.24	363.078 0.00				
0.158 0.00	0.759 1.04	3.631 2.19	17.378	2.87 83.176	0.17	398.107 436.516				
0.191 0.00	0.912 1.08	4.365 2.28	20.893	2.77 100.000	0.10 0.07	478.630 0.00				
0.209 0.00	1.000 1.096	4.786 5.248 2.43	22.909	2.48	0.04	524.807 575.440				
0.229 0.00 0.251 0.00	1.096 1.202 1.09	5.246 2.50 5.754 2.57	27 542	2.31 131.826 2.12 141.514	0.00 0.00	630.957 0.00 0.00				
0.275 0.00	1.318 1.12	6.310 2.64	30.200	1 91 144.544	0.00	691.831 0.00				
0.302 0.00 0.331 0.00	1.445 1.17 1.585	6.918 2.70 7.586 2.77	36308	1.70 158.489 1.70 173.780	0.00	758.578 0.00 831.764 0.00				
0.363 0.00	1.738 1.25 1.738	8.318 2.77	39.811	1.49 1.28 190.546	0.00 0.00	912.011 0.00				
0.398 0.03	1.905 2.089	9.120 2.90	43.652 47.863	1.08 208.930	0.00	1000.000				
0.437 0.22	2.089 1.56	10.965 2.95	52.481	0.89 251.189	0.00					

Operator notes:

Product	Particle Size	Weight	Cumulative
	μm	% Retained	% Passing
100 Mesh	150	0.00	100.0
150 Mesh	106	0.33	99.7
200 Mesh	75	1.00	98.7
270 Mesh	53	3.33	95.3
400 Mesh	38	6.67	88.7
635 Mesh	20	15.67	73.0
TOTAL		100.00	**

TABLE III-4 SCREEN ANALYSIS KM5954-04 Mag Feed

K80= 28µm

APPENDIX IV - KM5954

SPECIAL DATA

TABLE IV-1 Material Sorting Mass Balance - Tower Sample

Size	Sort Run	Stream	kg	mass %	As	say - perce	ent	Distr	ibution - pe	ercent	Ov	erall Distrib	ution - perc	ent
Fraction		Stream	ĸġ	111233 70	Cu	Fe	S	Cu	Fe	S	mass	Cu	Fe	S
		Product	28.6	15.5	1.54	23.3	1.72	80.4	57.1	53.9	2.1	13.4	8.8	8.8
<2 >1"	T5.1	Waste	156	84.5	0.069	3.21	0.27	19.6	42.9	46.1	11.5	3.3	6.6	7.5
		Feed	184.6	100	0.30	6.32	0.49	100	100	100	13.6	16.7	15.3	16.3
		Product	11.1	10.2	1.76	33.0	1.88	69.2	54.1	40.3	0.8	5.9	4.8	3.7
<2 >1"	T6.1	Waste	97.5	89.8	0.089	3.19	0.32	30.8	45.9	59.7	7.2	2.6	4.1	5.5
		Feed	108.6	100	0.26	6.24	0.48	100	100	100	8.0	8.6	8.9	9.2
		Product	25.5	20.2	0.73	10.6	0.92	76.8	47.4	51.2	1.9	5.7	3.6	4.2
<1 >0.5" T1.1	T1.1	Waste	100.5	79.8	0.056	2.99	0.22	23.2	52.6	48.8	7.4	1.7	4.0	4.0
		Feed	126	100	0.19	4.53	0.36	100	100	100	9.3	7.4	7.5	8.2
		Product	21.2	11.8	1.10	16.2	1.30	71.0	41.9	40.1	1.6	7.1	4.5	4.9
<1 >0.5"	T2.1	Waste	159	88.2	0.060	2.99	0.26	29.0	58.1	59.9	11.7	2.9	6.2	7.3
		Feed	180.2	100	0.18	4.54	0.38	100	100	100	13.3	10.0	10.8	12.3
<0.5"	_	Fines 1	754	_	0.25	5.90	0.41	_	-	-	55.7	57.4	57.5	54.0
<0.0		Fines 2	704		0.25	5.70	0.40				00.7	07.4	07.0	04.0
		Product	86.4	6.4	1.22	19.1	1.40	32.1	21.6	21.6				
Total		Fines	754	55.7	0.25	5.80	0.40	57.4	57.5	54.0				
		Waste	513	37.9	0.067	3.09	0.27	10.5	20.9	24.4				
		Feed	1353.4	100	0.24	5.62	0.41	100	100	100				
Pot	Potential Mill Feed			62.1	0.35	7.16	0.50	89.5	79.1	75.6				

TABLE IV-2 Material Sorting Mass Balance - Portal Sample

Size	Sort Run	Stream	kg	mass %	As	say - perce	ent	Distr	ibution - pe	rcent	Ov	erall Distrib	ution - perc	ent
Fraction		Stream	ĸġ	111855 /0	Cu	Fe	S	Cu	Fe	S	mass	Cu	Fe	S
		Product	40.8	15.0	0.37	10.8	0.69	48.2	34.5	46.3	3.0	6.8	6.1	7.3
<2 >1"	T7.1	Waste	231.5	85.0	0.070	3.61	0.14	51.8	65.5	53.7	16.8	7.3	11.7	8.5
		Feed	272.3	100	0.11	4.69	0.22	100	100	100	19.8	14.0	17.8	15.8
		Product	12.1	5.3	1.30	16.5	3.09	53.6	18.9	53.9	0.9	7.1	2.8	9.8
<2 >1"	T8.1	Waste	216.5	94.7	0.063	3.95	0.15	46.4	81.1	46.1	15.7	6.1	11.9	8.4
		Feed	228.6	100	0.13	4.61	0.30	100	100	100	16.6	13.2	14.7	18.1
		Product	25.5	14.6	0.44	9.90	0.66	51.7	31.7	44.0	1.9	5.0	3.5	4.4
<1 >0.5"	T3.1	Waste	149.5	85.4	0.070	3.64	0.14	48.3	68.3	56.0	10.9	4.7	7.6	5.6
		Feed	175	100	0.12	4.55	0.22	100	100	100	12.7	9.7	11.1	10.0
		Product	8.3	5.2	1.21	21.7	2.82	41.2	23.3	45.5	0.6	4.5	2.5	6.1
<1 >0.5"	T4.1	Waste 2	12.8	8.0	0.31	7.80	0.40	16.3	12.9	10.0	0.9	1.8	1.4	1.3
<1 >0.0	14.1	Waste 1	138	86.7	0.075	3.57	0.17	42.5	63.8	44.5	10.0	4.6	6.9	6.0
		Feed	159.1	100	0.15	4.86	0.32	100	100	100	11.6	10.9	10.8	13.4
<0.5"	-	Fines 1	540	_	0.23	6.10	0.31	_	-	-	39.3	52.1	45.6	42.6
<0.5		Fines 2	040	_	0.20	6.00	0.29	_	_		00.0	52.1	40.0	42.0
		Product	86.7	6.3	0.60	12.4	1.22	23.4	15.0	27.6				
Total		Fines	540	39.3	0.22	6.05	0.30	52.1	45.6	42.6				
		Waste	748.3	54.4	0.073	3.78	0.15	24.5	39.5	29.8				
		Feed	1375	100	0.16	5.21	0.28	100	100	100				
Pot	Potential Mill Feed			45.6	0.27	6.92	0.43	75.5	60.5	70.2				

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 1-NOV-2019 Account: KRL

CERTIFICATE VA19260634

Project: KM5954

P.O. No.: A2538

This report is for 21 Pulp samples submitted to our lab in Vancouver, BC, Canada on 15-OCT-2019.

The following have access to data associated with this certificate:

BRENDA TREMBLAY	ALS METALLURGY	SIMONE BAWTREE	BRAEDEN HAMMERL
	BRENDA TREMBLAY		

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-24	Pulp Login - Rcd w/o Barcode	
DISP-01	Disposal of all sample fractions	
	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	

ME-MS61	48 element four acid ICP-MS	
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Cu-OG62	Ore Grade Cu - Four Acid	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 1-NOV-2019 Account: KRL

Project: KM5954

	Method	WEI-21 Recvd Wt.	ME-MS61	ME-MS61 Al	ME-MS61 As	ME-MS61 Ba	ME-MS61 Be	ME-MS61 Bi	ME-MS61 Ca	ME-MS61 Cd	ME-MS61 Ce	ME-MS61 Co	ME-MS61 Cr	ME-MS61 Cs	ME-MS61 Cu	ME-MS61 Fe
	Analyte	kecva wt. kg	Ag ppm	%	ppm	ppm	ppm	ppm	Ca %	ppm						ге %
Sample Description	Units LOD	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	ppm 0.01	ppm 0,1	ppm 1	ppm 0.05	ppm 0.2	0.01
-	100	0.02	0.01	0.01	0.2		0.05	0.01	0.01	0.02	0.01	0.1	,	0.03	0.2	0.01
KM5954 TOWER T1.1	WASTE	0.06	0.07	7.40	16.5	310	0.58	0.06	2.83	0.10	17.15	15.9	79	1.98	599	3.79
KM5954 TOWER T2.1	WASTE	0.06	0.07	7.66	15.6	320	0.60	0.07	3.03	0.11	17.20	17.4	86	2.05	661	3.90
KM5954 TOWER T5.1	WASTE	0.06	0.05	7.68	14.9	310	0.57	0.06	3.56	0.11	18.60	16.7	47	1.90	806	4.17
KM5954 TOWER T6.1		0.06	0.07	7.61	15.8	310	0.56	0.07	3.50	0.11	17.80	16.3	57	1.78	1035	4.31
KM5954 TOWER T1.1	CON	0.06	0.30	6.73	21.0	530	0.54	0.09	3.87	0.19	45.6	22.5	79	1.67	7870	8.65
KM5954 TOWER T2.1	CON	0.06	0.40	6.02	10.0	650	0.56	0.08	3.53	0.31	69.3	22.6	78	1.33	>10000	12.35
KM5954 TOWER T5.1	CON	0.06	0.33	4.92	6.7	630	0.59	0.07	2.89	0.36	72.7	22.9	64	1.01	>10000	17.95
KM5954 TOWER T6.1	CON	0.06	0.43	3.43	3.7	600	0.66	0.06	2.06	0.41	110.5	24.9	51	0.44	>10000	25.9
KM5954 PORTAL T3.	1 WASTE	0.06	0.05	8.38	4.0	360	0.67	0.04	4.60	0.06	15.25	19.6	64	1.11	814	5.08
KM5954 PORTAL T4.	1 WASTE	0.06	0.05	8.28	4.2	360	0.68	0.04	4.68	0.08	17.70	22.8	57	1.18	904	5.24
KM5954 PORTAL T4.	2 WASTE	0.06	0.14	7.53	6.7	260	0,79	0.08	7,29	0.07	39.5	30.6	49	1.03	3510	10.55
KM5954 PORTAL T7.		0.06	0.05	7.97	4.0	360	0.58	0.04	4.93	0.08	14.85	24.2	56	1.07	787	5.33
KM5954 PORTAL T8.		0.06	0.04	8.25	4.5	370	0.62	0.04	5.37	0.09	16.55	25.1	50	1.16	747	5.88
KM5954 PORTAL T3.		0.06	0.21	7.37	8.6	250	0.80	0.10	7.75	0.09	34.2	35.9	55	0.99	5320	12.75
KM5954 PORTAL T4.		0.06	0.54	5.09	27.0	130	0.64	0.19	8.71	0.17	35.9	112.5	63	0.53	>10000	22.5
KM5954 PORTAL T7.		0.06	0.21	6.91	10.3	210	0.71	0.08	8,88	0.06	36.8	43.1	56	1.00	3940	12.45
KM5954 PORTAL T8.		0.06	0.64	4.38	28.3	90	0.49	0.14	12.25	0.21	29.7	108.0	64	0.37	>10000	19.45
KM5954 PORTAL FIN		0.08	0.16	8.14	7.8	440	0.71	0.06	5.16	0.13	25.5	27.2	54	1.82	2500	6.76
KM5954 PORTAL FIN		0.08	0.15	8.10	7.8	420	0.74	0.06	5.13	0.14	29.6	25.4	55	1.69	2180	6.64
KM5954 TOWER FINE		0.06	0.20	6.98	14.3	400	0.65	0.11	3.31	0.15	24.9	17.8	77	3.06	2630	5.17
KM5954 TOWER FINE		0.08	0.28	7.18	13.8	410	0.59	0.07	3,26	0.24	27.2	15.9	71	2.91	2640	5.31
KWIJJJJ4 TOWERTINE	.5 Z	0.00	0.20	/.10	10.0	410	0.00	0.07	0.20	0.24	<i>L7.L</i>	10.0	, 1	2.01	2040	5.01
		1														
		1														
		1														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 1-NOV-2019 Account: KRL

Project: KM5954

	Method	ME-MS61														
	Analyte	Ga	Ge	Hf	In	к	La	Li	Mg	Mn	Мо	Na	Nb	Ni	P	Pb
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	LOD	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
	-															010
KM5954 TOWER T1.1		15.50	0.05	1.4	0.053	1.15	6.9	12.6	1.16	526	3.66	3.00	1.8	7.8	680	4.1
KM5954 TOWER T2.1	WASTE	16.00	0.06	1.4	0.051	1.23	6.9	12.8	1.19	558	3.21	3.07	1.8	8.7	700	4.3
KM5954 TOWER T5.1	WASTE	16.40	0.07	1.2	0.066	1.10	7.7	12.0	1.16	615	3.00	3.06	1.8	7.5	680	4.9
KM5954 TOWER T6.1	WASTE	15.80	0.05	1.2	0.069	1.14	7.1	11.6	1.20	616	4.62	3.02	1.7	8.4	740	4.5
KM5954 TOWER T1.1	CON	16.40	0.09	1.4	0.147	1.79	23.8	14.2	1.56	551	18.80	1.93	1.4	13.7	880	6.1
KM5954 TOWER T2.1	CON	15.90	0.12	1.2	0.197	2.17	36.9	13.3	1.69	471	23.2	1.39	1.1	15.5	780	7.0
KM5954 TOWER T5.1	CON	13.45	0.11	1.0	0.234	2.21	39.5	10.4	1.51	377	22.7	0.99	0.8	16.4	900	4.0
KM5954 TOWER T6.1	CON	11.40	0.18	0.7	0.221	2.17	61.6	8.9	1.51	260	23.8	0.26	0.4	18.6	680	3.0
KM5954 PORTAL T3.	1 WASTE	16.55	0.05	0.8	0.057	1.03	6.4	10.1	1.89	636	2.39	3.28	1.4	10.3	710	2.8
KM5954 PORTAL T4.	1 WASTE	18.15	0.05	1.0	0.071	1.05	7.1	11.1	1.87	636	1.90	3.27	1.5	10.8	730	2.8
KM5954 PORTAL T4.	2 WASTE	19.60	0.08	1.1	0.401	0.91	24.2	9.0	2,24	679	9.85	1.94	1.4	13.2	860	2.5
KM5954 PORTAL T7.	1 WASTE	18.50	<0.05	0.9	0.069	0.91	5.7	10.5	1.98	719	2.12	2.91	1.4	12.5	650	3.2
KM5954 PORTAL T8.		18.55	0.06	0.9	0.091	0.93	7.1	10.3	2.18	782	1.71	2.82	1.4	13.2	690	3.0
KM5954 PORTAL T3.		19.00	0.08	1.0	0.361	0.86	19.3	9.5	1.93	741	7.59	1.84	1.6	14.6	830	3.0
KM5954 PORTAL T4.		17.85	0.09	0.9	0.451	0.50	21.3	7.8	1.45	939	27.6	0.76	1.2	34.4	650	3.5
KM5954 PORTAL T7.	1 CON	19.05	0.08	1.0	0.440	0.76	22.9	8.0	2.10	938	9.10	1.43	1.3	16.7	760	3.6
KM5954 PORTAL T8.		16.45	0.09	1.0	0.575	0.34	19.0	5.5	1.40	1390	12.75	0.58	1.1	34.4	840	4.9
KM5954 PORTAL FIN		17.50	0.06	1.0	0.129	1.12	12.6	11.2	1.75	555	5.46	2.81	1.5	11.7	670	9.4
KM5954 PORTAL FIN		17.95	0.06	1.0	0.135	1.08	15.0	11.7	1.75	554	6.81	2.83	1.6	11.9	670	8.0
KM5954 TOWER FINE		15.95	0.06	1.3	0.082	1.31	10.1	13.2	1.27	537	9.03	2.44	1.6	9.6	680	6.2
KM5954 TOWER FINE		15.35	0.06	1.3	0.077	1.35	11.2	12.6	1.31	544	8.52	2.47	1.5	9.0	710	23.3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 1-NOV-2019 Account: KRL

Project: KM5954

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
KM5954 TOWER T1.1 KM5954 TOWER T2.1 KM5954 TOWER T5.1 KM5954 TOWER T6.1 KM5954 TOWER T1.1	WASTE WASTE WASTE	32.1 32.8 29.9 27.6 52.3	0.004 0.005 0.006 0.003 0.014	0.22 0.26 0.28 0.32 0.92	1.97 2.08 2.25 2.37 2.48	18.4 18.6 19.6 19.1 18.0	<1 1 1 <1 2	0.8 0.9 0.8 0.8 0.8	220 229 244 258 216	0.16 0.14 0.14 0.13 0.11	0.06 0.05 0.07 0.06 0.08	1.53 1.48 1.53 1.34 1.39	0.381 0.393 0.382 0.383 0.326	0.24 0.22 0.19 0.19 0.22	1.2 1.2 1.2 1.1 1.8	114 120 124 119 120
KM5954 TOWER T2.1 KM5954 TOWER T5.1 KM5954 TOWER T6.1 KM5954 PORTAL T3.1 KM5954 PORTAL T4.1	CON CON WASTE	57.0 54.9 47.7 19.4 17.1	0.011 0.009 0.009 0.002 <0.002	1.31 1.62 1.68 0.13 0.13	2.14 1.40 0.97 0.95 1.13	15.0 12.0 6.8 19.9 22.1	1 1 <1 <1	0.8 0.8 0.6 0.6 0.6	178.0 130.5 71.0 476 474	0.09 0.07 <0.05 0.11 0.13	0.08 0.09 0.08 <0.05 <0.05	1.34 1.33 1.42 1.02 1.04	0.263 0.208 0.108 0.428 0.426	0.21 0.19 0.14 0.12 0.14	2.3 2.2 1.9 0.8 0.9	111 97 92 196 199
KM5954 PORTAL T4.2 KM5954 PORTAL T7.1 KM5954 PORTAL T8.1 KM5954 PORTAL T3.1 KM5954 PORTAL T3.2	WASTE WASTE CON	27.5 11.6 12.7 27.2 15.7	0.008 0.003 0.003 0.005 0.012	0.40 0.14 0.14 0.68 2.77	2.92 0.83 0.98 2.71 2.53	21.2 22.1 23.2 20.1 13.4	1 1 <1 1 3	0.7 0.6 0.6 0.8 0.8	461 519 541 413 293	0.13 0.12 0.11 0.13 0.09	<0.05 <0.05 <0.05 0.06 0.17	0.98 0.93 0.90 0.98 1.36	0.387 0.416 0.428 0.377 0.264	0.10 0.13 0.13 0.10 0.06	5.6 0.8 1.1 4.5 4.5	187 203 211 179 150
KM5954 PORTAL T7. T KM5954 PORTAL T8. T KM5954 PORTAL FINE KM5954 PORTAL FINE KM5954 PORTAL FINE KM5954 TOWER FINE	I CON ES 1 ES 2	24.3 9.7 33.3 31.3 35.4	0.006 0.010 0.003 0.005 0.004	0.69 3.04 0.29 0.28 0.37	2.61 2.39 1.75 1.67 2.02	18.2 10.7 19.9 20.4 18.9	1 3 1 1 1	0.8 0.9 0.7 0.7 0.8	410 140.5 433 424 208	0.10 0.08 0.13 0.12 0.12	0.07 0.16 <0.05 0.06 0.08	0.82 0.74 1.47 1.36 1.50	0.337 0.209 0.378 0.378 0.348	0.09 0.04 0.14 0.13 0.20	5.3 4.9 1.9 2.0 1.5	163 120 170 171 113
KM5954 TOWER FINE	S 2	37.1	0.003	0.39	2.04	18.6	1	0.8	208	0.12	0.10	1.51	0.356	0.22	1.5	114

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

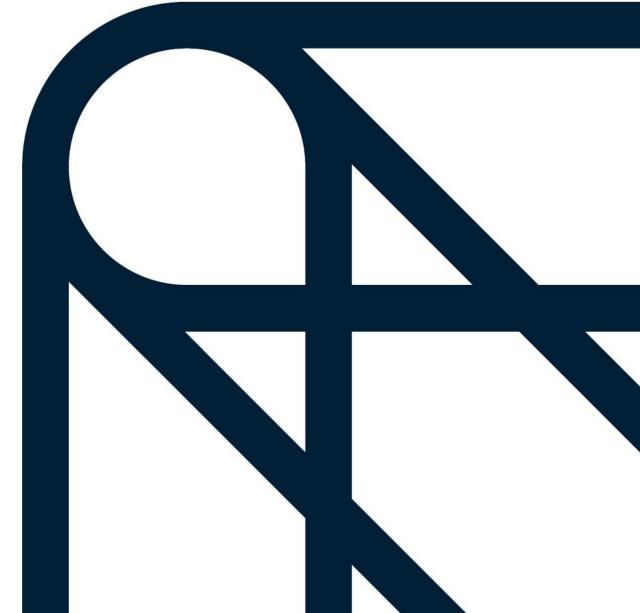
To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 1-NOV-2019 Account: KRL

Project: KM5954

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG62 Cu % 0.001	
KM5954 TOWER T1.1 KM5954 TOWER T2.1 KM5954 TOWER T5.1 KM5954 TOWER T6.1 KM5954 TOWER T1.1	WASTE WASTE WASTE	1.5 1.4 1.4 2.2 7.7	17.8 18.3 18.9 17.9 18.0	46 47 51 49 43	43.2 42.9 36.9 37.5 40.8		
KM5954 TOWER T2.1 KM5954 TOWER T5.1 KM5954 TOWER T6.1 KM5954 PORTAL T3.1 KM5954 PORTAL T4.1	CON CON WASTE	17.2 29.4 34.3 0.7 0.8	15.6 12.5 6.0 14.6 15.6	42 33 27 50 49	37.5 35.2 22.1 20.2 23.6	1.225 1.635 1.910	
KM5954 PORTAL T4.2 KM5954 PORTAL T7.1 KM5954 PORTAL T8.1 KM5954 PORTAL T3.1 KM5954 PORTAL T3.2	WASTE WASTE CON	2.5 0.8 0.7 3.9 7.8	25.1 14.5 15.5 24.0 21.2	36 57 58 35 26	23.8 22.8 22.0 26.1 25.5	1.260	
KM5954 PORTAL T7.1 KM5954 PORTAL T8.1 KM5954 PORTAL FINE KM5954 PORTAL FINE KM5954 TOWER FINES	CON IS 1 IS 2	4.5 5.6 2.7 2.5 5.1	24.6 23.3 17.6 17.8 20.5	38 27 46 47 46	28.0 30.2 26.3 25.5 44.1	1.375	
KM5954 TOWER FINES	52	5.3	19.8	46	42.8		

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry


To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 1-NOV-2019 Account: KRL

Project: KM5954

	CERTIFICATE COMMENTS
Applies to Method:	ANALYTICAL COMMENTS REE's may not be totally soluble in this method. ME-MS61
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Cu-OG62 DISP-01 LOG-24 ME-MS61 ME-OG62 WEI-21

MASS BALANCE AND PICTURES

Sorting of Copper ore

Client:	Nicola Mining					
Client Representative:	Peter Espig	Peter Espig				
Deposit / Project:	Craigmont Mine					
Outotec Sales Person:	Jörn Rohleder <u>Jorn.Rohled</u>	er@outotec.con	<u>n</u>			
	Saara Hägnas <u>Saara.Hagna</u>	<u>s@outotec.com</u>				
TOMRA Sales Person:	Harold Cline <u> Harold.Cline@</u>	tomra.com				
	Dr. Mathilde Robben <u>Math</u>	ilde.Robben@to	omra.com			
TOMRA Engineer:	Christian Korsten, Peter Sim	ions				
Project Number:	01928-19					
Document Revision:	V1					
Test Work Date:	August 2019					
Document History	Name	Date	Sign			
Preparer	Christian Korsten	21.08.2019	СК			

THIS REPORT IS FOR INTERNAL CUSTOMER USE ONLY

CONTENT

1	TEST RESULTS (SUMMARY)	3
2	TEST PROCEDURE AND RESULTS	3
3	SORTED IMAGES	10
4	TEST EQUIPMENT	15

Test	Sample	particle size	sensor	Input	Product	Waste	Yield	Capacity
				[kg]	[kg]	[kg]	[%]	[tph]
Test 1.1	Tower	-1"+1/2"	XRT	126,0	25,5	100,5	20,24	33
Test 2.1	Tower	-1"+1/2"	XRT	180,2	21,2	159,0	11,76	33
Test 3.1	Portal	-1"+1/2"	XRT	175,0	25,5	149,5	14,57	33
Test 4.1	Portal	-1"+1/2"	XRT	159,1	21,1	138,0	13,26	33
Test 4.2*	Portal	-1"+1/2"	XRT	21,1	8,3	12,8	39,34	n.a.
Test 5.1	Tower	-2"+1"	XRT	184,6	28,6	156,0	15,49	74
Test 6.1	Tower	-2"+1"	XRT	108,6	11,1	97,5	10,22	74
Test 7.1	Portal	-2"+1"	XRT	272,3	40,8	231,5	14,98	74
Test 8.1	Portal	-2"+1"	XRT	228,6	12,1	216,5	5,29	74

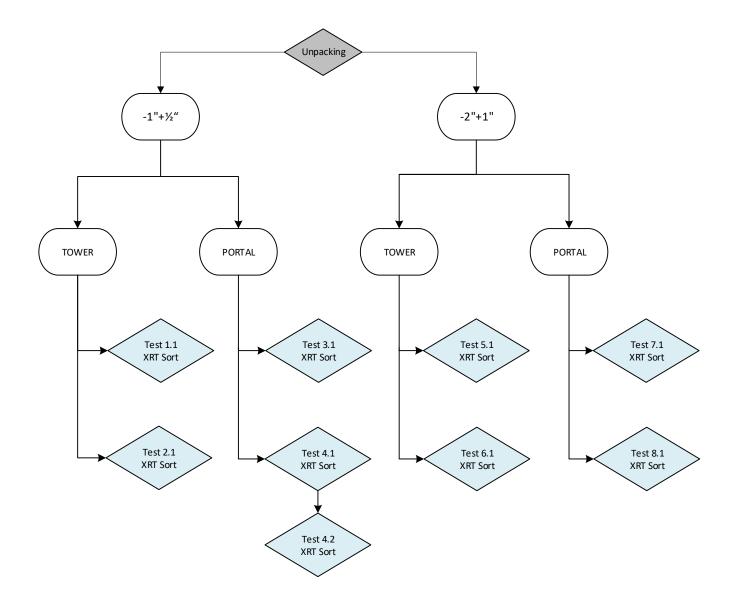
1 TEST RESULTS (SUMMARY)

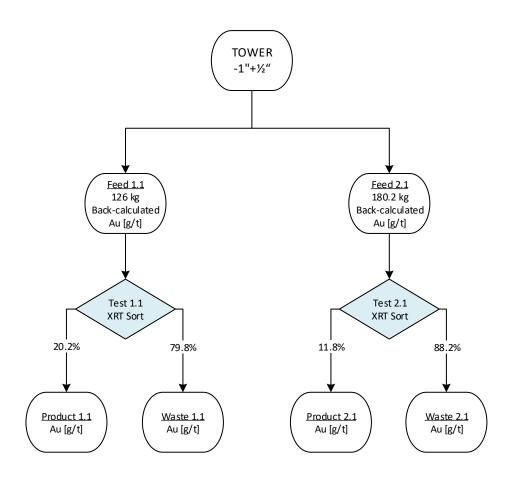
*Test 4.2: Feed Product of Test 4.1 (cleaning step)

2 TEST PROCEDURE AND RESULTS

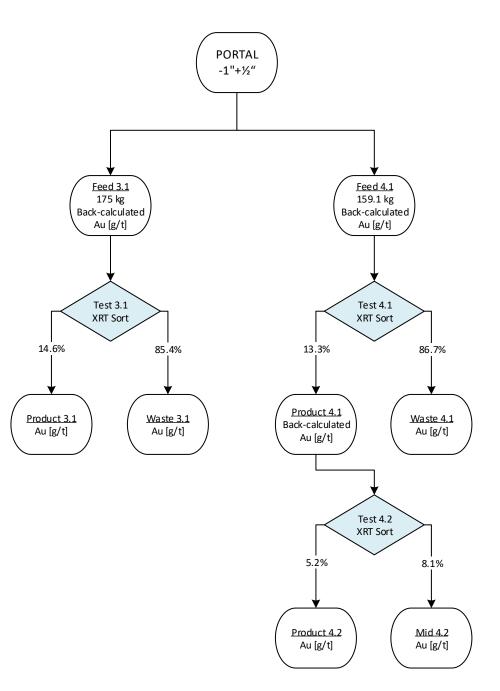
The selected sensing technique for this material is the X-ray transmission (XRT) sensor because of the expected differences in atomic density of the copper-bearing particles and host rock material. The sorter used for the test work documented in this report was TOMRA's COM Tertiary XRT. The sorter is described in detail in chapter 4.

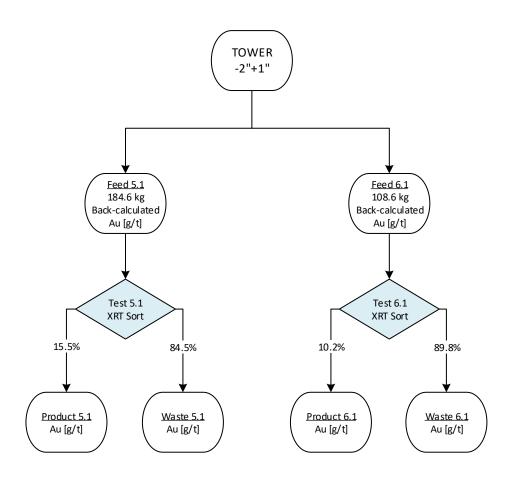
In order to investigate the separability, the sorter is trained, the software parameterized, and images were taken of the sample set.

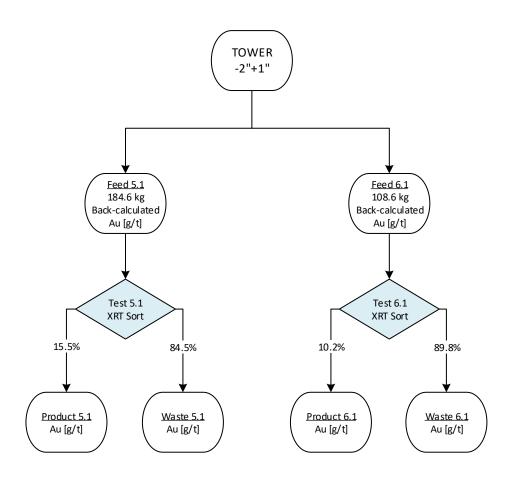

For the training of the COM Tertiary XRT, samples were exposed to high energy X-rays, and the resultant image was captured by the sensor. The X-ray sensor signal depends on atomic density and thickness of the material and relays information about the internal composition of the particles. Examples of raw and processed sensor images collected are shown in the figures below. For images recorded with the COM Tertiary XRT, TOMRA's image-processing software is used to classify changes in the intensity of the X-ray passing through the samples as either high atomic density or low atomic density. Note that, because the sorter is tailored to the material being tested, the terms high atomic density and low atomic density are used in a relative context. The different selected color classes (colored pixels) are then assessed as a percentage of the single rock area. This percentage is used as the parameter to determine and set the sorting cut.


Classification scheme XRT Dual:	Given colors
Low atomic density (Waste)	Red & green
High atomic density (Product)	Blue & black
Background	Grey

Sample 1	Raw XRT Dual image	Processed XRT Dual image
Sample PORTAL -2"+1"		
Sample TOWER -2"+1"		







SORTED IMAGES

Test 1.1	Sample	TOWER	
Size: -1"+1/2"	Setting: Set 1	Capacity [tph]: 33	Air pressure [bar]: 6
Product 1.1 (Eject)	Mass: 25.5 kg	Waste 1.1 (Drop)	Mass: 100.5 kg
1.1 -1.32 A	Trafa Manag		

Test 2.1	Sample	TOWER	
Size: -1"+1/2"	Setting: Set 2	Capacity [tph]: 33	Air pressure [bar]: 6
Product 2.1 (Eject)	Mass: 21.2 kg	Waste 2.1 (Drop)	Mass: 159.0 kg
	The Mission Tower		AZ Media J.O Tower

Test 3.1	Sample	PORTAL	
Size: -1"+1/2"	Setting: Set 1	Capacity [tph]: 33	Air pressure [bar]: 6
Product 3.1 (Eject)	Mass: 25.5 kg	Waste 3.1 (Drop)	Mass: 149.5 kg
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Der Micola Portal	or product rest Na. Product	Lee Micola Micola Micola Micola Micola Micola Micola Micola Micola Micola Micola Micola Micola Micola

Test 4.1	Sample	PORTAL	
Size: -1"+1/2"	Setting: Set 2	Capacity [tph]: 33	Air pressure [bar]: 6
Product 4.1 (Eject)	Mass: 21.1 kg	Waste 4.1 (Drop)	Mass: 138.0 kg
A CONTRACTION AND A CONTRACTIO	De Botal	CONTRACTORS ANNIAR	Die 12 Micola 10 Portal

Test 4.2 – Feed Product 4.1	.1 Sample PORTAL		
Size: -1"+1/2"	Setting: set 3-cleaner	Capacity [tph]: n.a.	Air pressure [bar]: 6
Product 4.2 (Eject)	Mass: 8.3 kg	Waste 4.2 (Drop)	Mass: 12.8 kg
0 0 0 Contraction Market Harter Ha	Dele Roctal	O P P P CONTRAL CON	De Rostal

Test 5.1	Sample TOWER		
Size: -2"+1"	Setting: Set 1	Capacity [tph]: 74	Air pressure [bar]: 7
Product 5.1 (Eject)	Mass: 28.6 kg	Waste 5.1 (Drop)	Mass: 156.0 kg
The second secon			

Test 6.1	Sample TOWER		
Size: -2"+1"	Setting: Set 2	Capacity [tph]: 74	Air pressure [bar]: 7
Product 6.1 (Eject)	Mass: 11.1 kg	Waste 6.1 (Drop)	Mass: 97.5 kg
			A Mana Tour

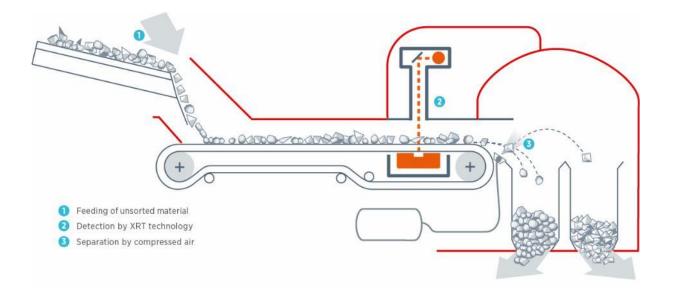
Test 7.1	Sample PORTAL		
Size: -2"+1"	Setting: Set 1	Capacity [tph]: 74	Air pressure [bar]: 7
Product 7.1 (Eject)	Mass: 40.8 kg	Waste 7.1 (Drop)	Mass: 231.5 kg
			A Pal

Test 8.1	Sam	ple PORTAL	
Size: -2"+1"	Setting: Set 2	Capacity [tph]: 74	Air pressure [bar]: 7
Product 8.1 (Eject)	Mass: 12.1 kg	Waste 8.1 (Drop)	Mass: 216.5 kg
	And		-2 + 1 Juck Minu 216.5 Pod

4 TEST EQUIPMENT

COM Tertiary XRT

The COM (common belt) series sorting equipment covers the range of applications which require a belt feeding system. The belt principle allows the presentation of a non-uniform feed. The particles can stabilize on the belt before they are scanned by the sensor(s). This principle also allows for a higher surface moisture in the tertiary size range.



The X-ray transmission technology enables materials to be recognized and separated based on their specific atomic density. This technology makes it possible to obtain a high purity level in sorting materials irrespective of moisture or surface pollution level.

The COM Tertiary XRT uses an electric X-ray tube and a highly sensitive, cutting-edge X-ray camera with DUOLINE[®] sensor technology - using two independent sensor lines with different spectral sensitivities. Data supplied by this camera is processed using TOMRA Sorting's proprietary high-speed X-ray processing unit. The system is able to identify the atomic density of the material – regardless of its thickness.

The machine can be quickly optimized for the required sorting tasks by the selection of sorting programs and sensitivity adjustments. The next figure shows the functional principle of the COM Tertiary XRT.

Input material (1) is evenly fed via a screen feeder or vibration feeder over a transition chute (both not shown) onto a conveyor belt. An electric X-ray tube (2) creates a broad-band radiation. This radiation penetrates the material and provides spectral absorption information that is measured with an X-ray camera using DUOLINE[®] sensor technology. The resulting sensor information is then processed to provide a detailed "density image" of the material allowing it to be separated into high and low-density fractions. If the sensor detects material to be sorted out, it commands the control unit to open the appropriate valves of the ejection module at the end of the conveyor belt (3). The detected materials are separated from the material flow by jets of compressed air. The sorted material is divided into two fractions in the separation chamber.

Rethink. Reimagine. Resource.

Europe/Russia/China

TOMRA Sorting GmbH * Feldstrasse 128 22880 Wedel/Hamburg Germany Phone: +49 4103 1888 0 Fax: +49 4103 1888 188 mining-sorting@tomra.com

Australasia

TOMRA Sorting Pty Ltd Unit 1, 20 Anella Avenue Castle Hill NSW 2154 Australia Phone: +61 2 8624 0100 Fax: +61 2 8624 0101 mining-sorting@tomra.com

Southern Africa

TOMRA Sorting (Pty) Ltd West Square Office Park, Unit 7 65 Inverness Drive East 407 West Avenue Ferndale 2194 South Africa Phone: +27 11 010 0300 Fax: +27 86 602 4646 mining-sorting@tomra.com

The Americas

www.tomra.com/mining

TOMRA Sorting, Inc. Englewood, Colorado 80112 USA Phone: +1 720 870 2240 Fax: +1 720 870 2241 mining-sorting@tomra.com